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Introduction - Part 1

• Chemical Reaction Engineering (CRE) involves 
analyzing gas-phase reactions and their heat 
effects.

• This lecture focuses on trends, optimum 
conditions, and energy balance considerations in 
gas-phase reactions.



Topics to be Addressed

• - Fundamentals of Gas-Phase Reactions

• - Heat Effects and Adiabatic Operations

• - Reversible Reactions and Temperature Effects

• - Impact of Inerts in Reactant Feed

• - Trends and Optimization in Reactor Performance



Objectives

• By the end of this lecture, students will be able to:

• - Understand gas-phase reaction trends and heat 
effects.

• - Apply energy balance equations to analyze 
reactor performance.

• - Assess the impact of inerts and temperature on 
conversion.

• - Optimize reactor conditions for reversible 
reactions.



Introduction 

• Understanding the role of heat exchange, reversible 
reactions, and inert effects is critical for optimizing 
gas-phase reactors.

• This session explores theoretical foundations and 
practical applications in reactor design.
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User Friendly Equations relate 
T, X, or Fi
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2. CSTR with heat exchanger, UA(Ta-T) and a

large coolant flow rate:
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User Friendly Equations relate T, X, or Fi
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3. PFR/PBR with heat exchange:
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User Friendly Equations relate T, X, or Fi
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3B. In terms of molar flow rates, Fi
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Reversible Reactions
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Heat Exchange
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Example: Elementary liquid phase reaction carried out in a PFR

FA0

FI

Ta

cm
Heat Exchange 

Fluid

BA 

The feed consists of both inerts I and Species A 

with the ratio of inerts to the species A being 2 to 1.



Heat Exchange
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a) Adiabatic. Plot X, Xe, T and the rate of disappearance as 
a function of  V up to V = 40 dm3.  

b) Constant Ta. Plot X, Xe, T, Ta and rate of disappearance of 
A when there is a heat loss to the coolant and the 
coolant temperature is constant at 300 K for V = 40 dm3. 
How do these curves differ from the adiabatic case. 



Heat Exchange
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c) Variable Ta Co-Current. Plot X, Xe, T, Ta and rate of 
disappearance of A when there is a heat loss to the 
coolant and the coolant temperature varies along the 
length of the reactor for V = 40 dm3. The coolant 
enters at 300 K. How do these curves differ from 
those in the adiabatic case and part (a) and (b)?

d) Variable Ta Countercurrent. Plot X, Xe, T, Ta and rate 
of disappearance of A when there is a heat loss to 
the coolant and the coolant temperature varies along 
the length of the reactor for V = 20 dm3. The coolant 
enters at 300 K. How do these curves differ from 
those in the adiabatic case and part (a) and (b)?



Heat Exchange
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Example: PBR A  B

5) Parameters

• For adiabatic:

• Constant Ta:

• Co-current:       Equations as is 

• Counter-current: 
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Reversible Reactions

1) Mole Balances
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Reversible Reactions

2) Rate Laws
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Reversible Reactions

3) Stoichiometry
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Reversible Reactions

Parameters
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3) Stoichiometry:
 Gas Phase 
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Gas Phase Heat Effects
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Example: PBR   A  B
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Reversible Reactions
Gas Phase Heat Effects
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Example: PBR   A  B



Reversible Reactions
Gas Phase Heat Effects
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Exothermic Case: 
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Endothermic Case:

Example: PBR   A  B



Reversible Reactions
Gas Phase Heat Effects
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Additional Parameters (17A) & (17B)
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Heat effects:
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Gas Phase Heat Effects
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Case 2: Heat Exchange – Constant Ta
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Reversible Reactions
Gas Phase Heat Effects
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Endothermic 
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Conversion on temperature

Exothermic ΔH is negative

Adiabatic Equilibrium temperature (Tadia) and conversion (Xeadia)
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X2
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Effects of Inerts in the Feed
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As inert flow increases the 
conversion will increase. 
However as inerts increase, 
reactant concentration
decreases, slowing down the 
reaction. Therefore there is an 
optimal inert flow rate to 
maximize X.

First Order Irreversible



Adiabatic:

Gas Phase Heat Effects
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As T0 decreases the conversion X will increase, however the reaction will 
progress slower to equilibrium conversion and may not make it in the 
volume of reactor that you have.

Therefore, for exothermic reactions there is an optimum inlet 
temperature, where X reaches Xeq right at the end of  V.  However, for 
endothermic reactions there is no temperature maximum and the X will 
continue to increase as T increases.
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Adiabatic:

Gas Phase Heat Effects
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Effect of adding inerts
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Exothermic Adiabatic
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As θI increase, T decrease and 
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Heat Exchange
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Summary

• In this lecture, we covered:

• - Trends and optimization strategies for gas-phase 
reactions.

• - The role of heat effects in reactor performance.
• - Analysis of reversible reactions and temperature 

dependencies.
• - Impact of inerts on reaction rates and conversion.

• Understanding these principles is essential for 
designing efficient and effective reactors.
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